Curriculum for Master of Technology in VLSI & Embedded Systems (MTech VLSI & ES) (Pattern 2024)

With Effect From A.Y. 2024-25

Matoshri Education Society's Matoshri College of Engineering and Research Centre, Eklahare, Nashik (Autonomous)

NBA and NAAC Accredited, Approved by All India Council for Technical Education, New Delhi, Affiliated to Savitribai Phule Pune University, College Code:5177 Website: <u>https://matoshri.edu.in</u> Phone: +91 0253 2406600, 18002336602

Eklahare shivar, Near Odhagaon, Off Nashik-Aurangabad Highway, Nashik, Maharashtra 422105

Curriculum for Post Graduate Programme- MTech VLSI & ES (Pattern 2024)

Matoshri College of Engineering and Research Centre, Eklahare, Nashik has been granted the academic autonomous status from academic year 2024-25 by University Grant Commission. The Academic autonomous status has been considered as an opportunity for imparting comprehensive education. The academic autonomous status can be utilized to implement the National Education Policy (NEP 2020) effectively. The institute has a prudent plan to incorporate necessary dynamism in academic structure to march towards the vision of the institute and develop the research and skill oriented human resources contributing to the development of the nation.

With a focus on staying at the forefront of educational innovation, the institution diligently prepares curricula that are both dynamic and industry-aligned. This process entails meticulous planning and collaboration to ensure the development of comprehensive programs catering to the evolving needs of students and industries alike.

The highlights of Master of Technology (MTech) curriculum:

- Every Post Graduate programme is of two years duration with four semesters.
- The curricula have been designed adhering to the NEP guidelines and norms.
- Efforts have been taken to design the curricula which are unambiguous and self-explanatory.
- Students have to earn 84 credits for the award of MTech degree.

Credit Requirement and Eligibility for the PG Programme

Eligibility first year PG admissions will be as per guidelines provided by Admission Regulating Authority of Government of Maharashtra and guidelines of NEP2020.

Examination and Passing

Rules of Passing

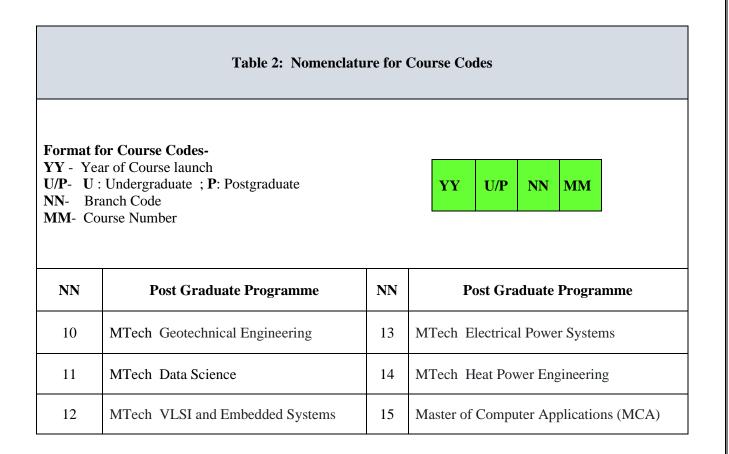
- To pass the course, the student has to earn a minimum of 40 percent marks in End Semester exam and 40 percent average marks(In-Semester marks + End-Semester marks) in the exam head.
- Students can earn the credit of the course if he/she passes the course with appropriate grade.
- The student is declared as PASS in the corresponding year if he/she earns the credits of all the courses of the year.
- A student will be awarded the master's degree if he/she earns 84 credits.

Rules of A.T.K.T.

The students who is not detained to appear in examination either in first semester or second semester of First year and, has filled the form of examination is eligible to take admission in second year of PG course.

Exit Point:

For those who join 2 year PG programmes, there shall only be one exit point. Students who exit at the end of 1st year shall be awarded a Postgraduate Diploma.


This document includes-

- Credit Distribution Across Semesters and Course Code Nomenclature
- Examination Heads and Assessment Schemes
- Various Courses' Categories, Description and Abbreviation
- Program Outcomes
- Four Semesters Course Structures
- Broad Courses' Categories, and Credit Distribution
- Curriculum for semester I
- Curriculum for semester II
- Curriculum for semester III
- Curriculum for semester IV

		ege of Engineering and Research Centre (Aut Curriculum for blogy in VLSI & Embedded Systems (MTech VLSI & 1	
		Table of Contents	
Sr. No.		Description	Page No.
1.	Semester I		
	24P1201	Physics of VLSI Devices	<u>13</u>
	24P1202	MOOC_1	<u>15</u>
	24P1203	Research Methodology	<u>16</u>
	24P1204	Embedded System Design	<u>18</u>
	24P1205(A)	Micro Electromechanical Systems	<u>20</u>
	24P1205(B)	VLSI Digital Signal Processing	<u>22</u>
	24P1205(C)	Low Power IC Design	<u>24</u>
	24P1205(D)	System Design with FPGA	<u>26</u>
	24P1206	Digital design and Embedded system Lab	<u>28</u>
	24P1207	Elective 1 Lab	<u>33</u>
	24P1208	Study of Indian Constitution	<u>39</u>
2.	Semester II		
	24P1209	MOOC_2	
	24P1210	Analog IC Design	
	24P1211	ASIC Design	
	24P1212(A)	Micro Sensors and Interface Electronics	
	24P1212(B)	System-on-Chip Design	
	24P1212(C)	Mixed Signal IC Design	
	24P1212(D)	Real Time Operating Systems	
	24P1213	Analog IC and ASIC Design Lab	
	24P1214	Elective_2 Lab	
	24P1215	Project and Finance Management	
3.	Semester III		
	24P1216	MOOC_3	
	24P1217	VLSI Testing and Testability	
	24P1218(A)	RFIC Design	
	24P1218(B)	DSP Architectures	
	24P1218(C)	Bio Sensors and Circuits	
	24P1218(D)	High Speed ICs	
	24P1219	VLSI Testing and Testability Lab	
	24P1220	Company Law and Corporate Governance	
	24P1221	Dissertation Stage-I	
4.	Semester IV		
	24P1222	Internship	
	24P1223	MOOC_4	
	24P1224	Dissertation Stage-II	

Home

Table 1: Total Credits and Total Marks for Master of Technology (MTech VLSI & ES)									
Semester	Semester Total Credits Total Marks								
Ι	22	650							
II	22	650							
III	20	600							
IV	20	600							
Total	84	2500							

		Table 3: Examination H	eads and Assessment Sch	emes			
Exam Head	Abbrev iation	In Semes (40% of Te	End Semester Exam				
		In_Sem_Exam_1 (20%)	(60% of Total Marks)				
Theory	TH	CAT/CCE based on 20% curriculum	CAT/CCE based on 20% curriculum	Theory examination based on 60% curriculum			
Project	PROJ	Progress Review I with Demonstration, Presentation, Oral & Report	Progress Review II with Demonstration, Presentation, Oral & Report	Activity, Presentation, Demonstration, Oral & Report as applicable			
Internship	INT	Progress Review I with Activity, Presentation, Demonstration, Oral & Report as applicable	Progress Review II with Activity, Presentation, Demonstration, Oral & Report as applicable	Activity, Presentation, Demonstration, Oral & Report as applicable			
Practical	PR	performance, demonstrati	ed on experiment/ activity ion, Presentation, Oral and rt as applicable	Experiment, activity performance, demonstration, Presentation, Oral & Report, journal as applicable			
Term work	TW	performance, demonstrati	ed on experiment/ activity ion, Presentation, Oral and rt as applicable	Activity, Experiment performance, demonstration, Presentation, Oral & Report, journal as applicable			
Seminar	SEMI	Mid-semester review based on topic of study, Discussions, Presentat					
Continuous Assessment Test	САТ			tt's progress with descriptive or ge and skills in online or offline			
Continuous and Comprehensive Evaluation	CCE	performance, work experies		arious dimensions viz- academic ty, innovation, teamwork, public ge, skills and attitude.			

Table 4: Various Courses' Categories, Description and Abbreviation							
Broad Category	Description	Abbreviations					
	Programme Core Course	PCC					
Due anome Courses	Programme Core Course Lab	PCCL					
Program Courses	Programme Elective Course	PEC					
	Programme Elective Course Lab	PECL					
Multidiaginlingwy Courses	Multidisciplinary Course	MDC					
Multidisciplinary Courses	Generic Elective	GE					
Experiential Learning	Project	PROJ					
Courses	Internship / On Job Training	INT / OJT					
	Practical	PR					
	Internship	INT					
Course Type/	Theory	TH					
Teaching Learning	Tutorial	TUT					
Schemes / Examination	Lecture	Lect					
Heads	Laboratory Course	Lab					
	Term work	TW					
	Seminar	SEMI					
моос	Massive Open Online Courses by NPTEL under SWAYAM	MOOC					
Project Management, Finance and Governance	Project Planning/ Entrepreneurship Development / Engineering Economics / Management/ Corporate Laws/ Corporate Governance	PMFG					
In Semester Examination	In_Sem_Exam	ISE					
Continuous Assessment Test	Continuous Assessment Test	САТ					
End Semester Examination	End_Sem_Exam	ESE					
Continuous & Comprehensive Evaluation	Continuous & Comprehensive Evaluation	CCE					
Bloom's Taxonomy	Bloom's Taxonomy	BL					
Course Outcome	Course Outcome	СО					
Program Outcome	Program Outcome	РО					

At the e	Table 5: Program Outcomes end of Post Graduate Program, a student would have:
PO1	Problem Solving and Research Skill:An ability to independently carry out research /investigation and development workto solve practical problems
PO2	Communication: An ability to write and present a substantial technical report/document
PO3	Lifelong Learning: Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program
PO4	Critical Thinking, Project Management and Finance, Scholarship of knowledge: Demonstrate advanced knowledge and skills understanding management principle to analyze complex engineering problems critically, and apply the same to, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economical and financial factors while working as individual or in teams or as a leader in a team
PO5	Collaborative and Multidisciplinary work: An ability to think critically and apply appropriate logic, analysis, judgment and decision making and to function as an effective member or leader of engineering teams to achieve common goals
PO6	Usage of Modern Tools, Ethical Practices and Social Responsibility: An ability to use appropriate techniques, skills, and modern engineering tools necessary for engineering practice and commit to professional ethics and responsibilities

At the er	Program Specific Outcomes At the end of Post Graduate Program,					
PSO1:	Design and create novel systems in the field of VLSI design technology and embedded electronic systems to address and solve global challenges contributing to advancements in technology and society.					
PSO2:	Carry out research activities in Electronics, VLSI design and technology using advanced hardware and software tools specific to the field, contributing to innovations and advancements in the industry.					

	Table 6: First Year of MTech (FY MTech VLSI & ES) Semester I													
	Examination and Marks Teaching Scheme (% of Total Curriculum and Marks)													
Courses					ng Sc rs/Wee		In_Sem (40		End_Sem Exam (60%)	Marks		Cre	edit	
Course Code	Course Type	Title of Course	Exam Head	Lect	TUT	PR	CAT	CCE	ESE	Total	ТН	TUT	PR	Total
24P1201	MDC	Physics of VLSI Devices	TH	04	-	-	20	20	60	100	04	-	-	04
24P1202	PCC	MOOC_1 #	TH	04	-	-	20	20	60	100	04	-	-	04
24P1203	PCC	Research Methodology	TH	02	-	-	20	20	60	100	02	-	-	02
24P1204	PCC	Embedded System Design	TH	04	-	-	20	20	60	100	04	-	-	04
24P1205	PEC	Program Elective Course_1	TH	04	-	-	20	20	60	100	04	-	-	04
24P1206 PCCL Digital design and Embedded system Lab PR		-	-	04	20	0	30	50	-	-	02	02		
24P1207	PECL	Elective 1 Lab	PR	-	-	02	20	0	30	50	-	-	01	01
24P1208 PMFG Study of Indian Constitution SEMI			-	01	-	20	0	30	50	-	01		01	
	11	Total		18	01	06	26	50	390		18	01	03	
Total Hours/ Week					25			650		650		22		22

Program Elective Course_1						
Course Code	Course Name					
24P1205-A	Micro Electromechanical Systems					
24P1205-B	VLSI Digital Signal Processing					
24P1205-C	Low Power IC Design					
24P1205-D	System Design with FPGA					
24Р1205-Е	Generic Elective **					

MOOC_1: NPT	MOOC_1: NPTEL Courses under SWAYAM for AY 2024-25							
Course Code	Course Name^							
24P1202-A	Microelectronics: Devices to Circuits							
24Р1202-В	CAD for VLSI Design II							
24P1202-C	System Design Through Verilog							
24P1202-D	Digital VLSI Testing							

Ehlahare

^Note: Course Names will be declared as per availability of NPTEL courses of 12/16 weeks in that particular year for the semester.

****GE:** An elective course chosen generally from an unrelated discipline/subject, with an intention to seek knowledge beyond the discipline. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa.

	Matoshri College of Engineering and Research Centre, Eklahare, Nashik Master of Technology (M Tech VLSI & Embedded Systems) (wef 2024-25) Table 7: First Year of MTech (FY MTech VLSI & ES) Semester II													
				Tooob	ing So	homo	(0/ of 7		ion and Mar riculum and					
Courses				Teaching Scheme Hrs/Week			In_Sem Exam (40%) End_Sem Exam (60%)		Marks	Credit				
Course Code	Course Type	Title of Course	Exam Head	Lect	TUT	PR	САТ	CCE	ESE	Total	ТН	TUT	PR	Total
24P1209	PCC/ MDC	MOOC_2	TH	04	-	-	20	20	60	100	04	-	-	04
24P1210	PCC	Analog IC Design	TH	04	-	-	20	20	60	100	04	-	-	04
24P1211	PCC	ASIC Design	TH	04	-	-	20	20	60	100	04	-	-	04
24P1212	PEC	Program Elective Course_2	TH	04	-	-	20	20	60	100	04	-	-	04
24P1213	PCCL	Analog IC and ASIC Design Lab	TW+ PR	-	-	04	40	0	60	100	-		02	02
24P1214	PECL	Elective_2 Lab	TW+ PR	-	-	04	40	0	60	100	-	-	02	02
24P1215	PMFG	Project and Finance Management	SEMI	-	01	02	20		30	50	-	01	01	02
		Total		16	01	10	26		390	650	16	01	05	22
		Total Hours/ Week			27			650		0.50		22		22

Program Elective Course_2						
Course Code	Course Name					
24P1212-A	Micro Sensors and Interface Electronics					
24P1212-B	System-on-Chip Design					
24P1212-C	Mixed Signal IC Design					
24P1212-D	Real Time Operating Systems					
24Р1212-Е	Generic Elective **					

MOOC_2: NPTEL Courses under SWAYAM for AY 2024-25						
Course Code Course Name^						
24P1209-A	Analog IC Design					
24Р1209-В	Advanced VLSI Design					
24P1209-C	VLSI Technology					
24P1209-D	Advance Digital Signal Processing					

ASHI

****GE:** An elective course chosen generally from an unrelated discipline/subject, with an intention to seek knowledge beyond the discipline. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa.

Matoshri College of Engineering and Research Centre, Eklahare, Nashik (Autonomous) Page # 9/40`

	Matoshri College of Engineering and Research Centre, Eklahare, Nashik Master of Technology (M Tech VLSI & Embedded Systems) (wef 2024-25) Table 8: Second Year of MTech (FY MTech VLSI & ES) Semester III													
Teaching Scheme (% of Total Curriculum and Marks)														
		Courses	Teaching Scheme(76 0f Total Culticulum and Warks)Hrs/WeekIn_Sem ExamEnd_Sem(40%)(40%)ExamMarks											
Course Code	Course Type	Title of Course	Exam Head	Lect	TUT	PR	CCE_1	CCE_2	ESE	Total	ТН	TUT	PR	Total
24P1216	PCC	MOOC_3	TH	04	-	-	20	20	60	100	04	-	-	04
24P1217	PCC	VLSI Testing and Testability	TH	04	I	-	20	20	60	100	04	-	-	04
24P1218	PEC	Program Elective Course -3	TH	04	-	-	20	20	60	100	04	-	-	04
24P1219	PCCL	VLSI Testing and Testability Lab	PR	-	-	02	2	0	30	50	-	-	01	01
24P1220 PMFG Company Law and Corporate Governance SEMI					01	-	2	0	30	50	-	01	-	01
24P1221	PROJ	Dissertation Stage-I	PROJ	-	-	12	40	40	120	200	-	-	06	06
Total 12 01 14 240 360 12 01 07 20									20					
	Total Hours/ Week 27 600 000 20 20													

Program Elective Course_3							
Course Code Course Name							
24P1218-A	RFIC Design						
24P1218-B	DSP Architectures						
24P1218-C	Bio Sensors and Circuits						
24P1218-D	High Speed ICs						
24P1218-E	Generic Elective **						

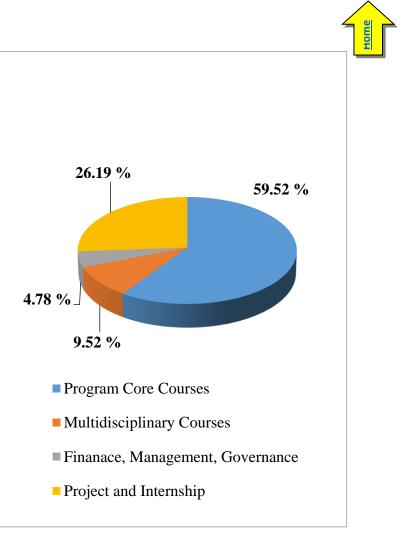
MOOC_3: NPTEL Courses under SWAYAM for AY 2025-26									
Course Code Course Name^									
24P1216-A	Analog VLSI Design								
24P1216-B	VLSI Design Flow: RTL to GDS								
24P1216-C	Microelectronics: Devices to Circuits								
24P1216-D	VLSI Interconnects								

^Note: Course Names will be declared as per availability of NPTEL courses of 12/16 weeks in that particular year for the semester. ****GE:** An elective course chosen generally from an unrelated discipline/subject, with an intention to seek knowledge beyond the discipline. A core course offered in a discipline/subject may be treated as an elective by other discipline/subject and vice versa.

	Matoshri College of Engineering and Research Centre, Eklahare, Nashik Master of Technology (M Tech VLSI & Embedded Systems) (wef 2024-25) Table 9: Second Year of MTech (FY MTech VLSI & ES) Semester IV													
Courses					ing Sc rs/Wee		(% of	Fotal Cur n Exam	on and Ma riculum and End_Sem Exam (60%)			Cr	edit	
Course Code	Course Type	Title of Course	Exam Head	Lect	TUT	PR	CCE_1	CCE_2	ESE	Total	ТН	TUT	PR	Total
24P1222	INT	Internship\$	TW	-	-	\$	50	50	150	250	-	-	8	8
24P1223	PCC	MOOC_4	TH	4	-	-	20	20	60	100	4	-	-	4
24P1224	24P1224 PROJ Dissertation Stage-II PROJ					16	50	50	150	250	-	-	8	8
	Total Total Hours/ Week					-	24	40 600	360	600	4	- 20	16	20

MOOC_4: NPT	MOOC_4: NPTEL Courses under SWAYAM for AY 2025-26								
Course Code Course Name^									
24P1209-A Embedded Systems- Design Verification									
and Test									
24Р1209-В	Design and Analysis of VLSI Subsystems								
24P1209-C	IC Technology								
24P1209-D	VLSI Data Conversion Circuits								

^Note: Course Names will be declared as per availability of NPTEL courses of 12/16 weeks in that particular year for the semester.


\$ Internship:

- Internship corresponding to major courses is to be completed after semester III Examinations and before commencement of semester IV of at least 180 hours/ 6 weeks; and it is to be assessed and evaluated in semester IV.
- It is almost imperative that the commencement of Semester IV needs to be approx. 3 weeks beyond the schedule.

Dr. Jayant J. Chopade Chairman, BoS & Head, E&TC Engineering

Table 10: Broa	Table 10: Broad Courses' Categories, and Credit Distribution											
Broad Category	Broad Category Description											
Program Courses	Programme Core Course	30										
Total Credit= 50 59.52%	Programme Core Course Lab	05	35	41.66								
(19.00 % in online	Programme Elective Course	12										
mode)	Programme Elective Course Lab	03	15	17.85								
Multidisciplinary Courses Total Credit = 26 09.52%	Multidisciplinary Course	08	08	09.52								
	Study of Indian Constitution	01										
Project Management, Finance, and	Project Management and Finance	02	04	04.78								
Governance Total Credit =04 04.78%	Company Law and Governance	01										
Experiential Learning Courses Total Credit =22	Dissertation	14	22	26.19								
26.19%												
	84	84	100									

Matoshri College of Engineering & Research Centre, Nashik Master of Technology (MTech VLSI & Embedded Systems) First Year Master of Technology (FY MTech VLSI & Embedded Systems) 24P1201: Physics of VLSI Devices **Teaching Scheme Examination Head: TH** Credit **Examination Scheme & Marks** CAT: 20 Marks Lectures: 4 Hrs/week 04 ISE CCE : 20 Marks ESE 60 Marks : **Prerequisite: Basic Electronics/ Semiconductor Devices** Digital design and Embedded system Lab **Companion Course, if any: Course Objectives:** The course is aimed to: 1. Explicate the fundamentals of intrinsic, extrinsic semiconductors with carrier concentration, modelling and physics of various carrier current transport mechanisms 2. Familiarize detailed physics and modelling of PN Junction, MOS capacitors, and **MOSFETs** 3. To study the impact of scaling on device performance and reliability 4. Analyze and discuss the short channel effects and the issues of UDSM transistors 5. To explore emerging trends and future directions in VLSI technology 6. To develop skills in designing semiconductor devices, emphasizing the integration of theoretical knowledge with practical applications in real-world problem-solving VLSI technology **Course Outcomes:** On completion of the course, learner will be able to: BL Analyze the principles of semiconductor physics, including carrier 4 **CO1:** concentrations and current flow mechanisms. Evaluate the electrical characteristics and transient behavior of p-n junctions **CO2:** and document the analysis and design considerations in detailed technical 5 reports. Develop an understanding of MOS capacitors and MOSFET characteristics, **CO3:** implementing compact models in SPICE for circuit simulation, and solving 6 practical design challenges Analyze the effects of scaling and short-channel effects on MOSFET **CO4:** performance in modern semiconductor devices, investigating their 4 implications on real-world designs. Proactively investigate ultra-deep submicron (UDSM) transistor design issues, addressing challenges such as gate leakage, tunneling effects, and their 5 **CO5**: impact on device reliability. Design and model semiconductor devices considering scaling effects and apply these designs to practical VLSI technology applications, supporting 6 **CO6:** real-world problem-solving and research. Unit-1: **Semiconductor Physics and Carrier Transportation** 8 hrs Energy bands in Intrinsic and Extrinsic semiconductors, Direct and Indirect semiconductors, Carrier Concentrations, Density of states, Fermi-Dirac distribution, Temperature Dependence of

Carrier Concentrations, Compensation and Space Charge Neutrality.

Current flow mechanisms: Mobility, Drift current, Diffusion current, Current density equations, Continuity equation.

Unit-I	I: P-N	Junctions						8 hrs
diagrai	ms, Poissor	, junction bine equation, Serojunctions	tatic curren			-		0.
Unit-I	II: MOS	Capacitor,	MOSFET	s and Com	pact Model	S		8 hrs
modula Charac MOSF voltage Unit-I	ation, Gate eteristics of ETs: Drain e on carrier V: Scalin	Accumulati work function MOS n current, Sa mobility, C ng and Shor Channel ler	on, Oxide a aturation vo ompact mo rt Channel	nd Interface ltage, Sub-t dels for MC Effects	charges, T hreshold co DSFET and t	hreshold vo nduction, E their implen	ltage, Curre ffect of gate mentation in	nt-Voltage e and drair <u>SPICE.</u> 7 hrs
breakd	own, Drair	i-induced ba	rrier loweri	ng.				
	of tox, Effe	M Transisto ect of high-k s, Different g	and low-k	dielectrics o		•		
Text B								
2].	U.S, Sever "Physics of Publishers	ate Electron nth Edition, of Semicono s, US, 2017. of Semicono 006.	2014. ductor Dev	ices", J.P. (Colinge and	C. A. Colin	ige, Kluwer	Academic
Refere	ence Books	:						
2].	Oxford Un "Fundam Education	on and Mod niversity Pre ental of Ser , US, 2017. nentals of S 2010.	ss, US, Thi niconducto	rd Edition, 1 or Devices"	2011. , M K Achu	itan and K	N Bhatt, Mc	Graw Hill
he CO-	PO Mappi	ng Matrix:						
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	2		2	1			2	1
CO2	2	3					1	
						1	1	

CO3

CO4

CO5

CO6

Matoshri College of Engineering & Research Centre, Nashik Master of Technology (MTech VLSI & Embedded Systems)

First Year Master of Technology (FY MTech VLSI & Embedded Systems)

24P1202: MOOC_1

Teaching Scheme	Credit	Examinat	Examination Head: TH					
		Examination Scheme & Marks						
	4	ICE	CAT:	20 Marks				
Lectures: 4 Hrs/week	4	ISE	CCE :	20 Marks				
		ESE	:	60 Marks				
Guidelines								

This course aims to create an opportunity for students to acquire the necessary skill set for employability through massive online courses where the rare expertise of world famous experts from academics and industry are available.

MOOCs (**Massive Open Online Courses**) provide an affordable and flexible way to learn new skills. MOOCs are courses delivered online and accessible to all for free. Massive because enrolments are unlimited and can run into hundreds of thousands. Open because anyone can enroll — that is, there is no admission process. Online because they are delivered via the internet. Course because their goal is to teach aspecific subject. MOOCs typically comprise video lessons, readings, assessments, and discussion forums.

Learner has to select one of the following courses and successfully complete the same:

Course Code	Course Name (Udemy) for AY 2024-25
24P1202-A	CMOS Analog Circuit Design https://www.udemy.com/course/analog_ic_design_overview/
24P1202-B	Introduction to VHDL for FPGA and ASIC design https://www.udemy.com/course/introduction-to-vhdl-for-fpga-and-asic- design/
24P1202-C	Analog Circuit Design - An Intuitive Approach https://www.udemy.com/course/analog-circuit-design-intuitive-approach-to- design
24P1202-D	VLSI Design https://www.udemy.com/course/vlsi-design-mask/

Matoshri College of Engineering & Research Centre, Nashik Master of Technology (MTech VLSI & Embedded Systems)									
First Year Master of Technology (FY MTech VLSI & Embedded Systems)									
24P1203: Research Methodology									
Teaching SchemeCreditExamination Head: TH									
Examination Scheme & Marks									
T a atoma a	2 Hrs/week	2	ICE	CAT: 20	Marks				
Lectures:	2 Hrs/week	2	ISE	CCE: 20	Marks				
			ESE	: 60	Marks				
Companion Course, if any:Digital design and Embedded system Lab (24P1206)									
Course Ob	ojectives:								
• To	understand basic cor	ncepts of research and its m	nethodologies						
• To	learn the methodolog	gy to conduct the Literature	e Survey						
• To	acquaint with the too	ols, techniques, and process	ses for statistic	cal analysis					
• To	effectively use and	compare optimization tecl	hniques for so	olving problems i	nvolving				
sing	gle and multi-parame	eter cost functions			_				
		ling theory and its application	ion in research	1					
Course Ou	itcomes:								
On comple	tion of the course, le	earner will be able to:			BL				
CO1:	Identify fundame	ntal concepts, purposes,	processes, and	d motivations of	1				
COI:	research, encompa	ssing various paradigms, ty	pes, and scien	ntific postulates.	L				
	Conduct a literatu	re survey, define a clear	research state	ement, develop a					
CO2:	comprehensive rese	earch plan, identify diverse	research tools	s, and present the	5				
	report.								
CO3:		ensive statistical analyses,	Ũ	r and uncertainty	4				
		erform hypothesis testing on							
004		imization techniques to so	-	-					
CO4:		d multi-parameter cost funct	-	ent the results and	3				
		comprehensive technical rep							
CO5:		eory and estimation techniques on parameters in research by			3				
		to conduct comprehensive	· · ·	Ŭ					
	-	rch statements, literature s		· ·					
CO6:		optimization techniques, an							
000		ovative solutions for comple							
	E E	ubstantial technical report.	, Pro	, p					
		Course Contents							
Unit-I:	Introduction			0	7 Hours				
Evolution	of Research Meth	odology: Meaning, nature	e, scope, and	significance of	research				
Research p	aradigm; The purpos	se and Products of Research	; Reasons for	doing research, O	bjectives				
of research	n, Motivation for re	esearch; Postulates underly	ying scientific	investigations; '	Types of				
research; R	esearch process and	work flow.							
Engineerii	ng Research-Why?	Research Questions, Eng	ineering Ethic	cs, conclusive pr	oof-wha				
constitutes	A research project-V								
Case		EE Code of Ethics, ACM S	•	0					
Studies		e, Code of Ethics especially							
(if any)	-	ent, sustainable outcomes,	employer, g	eneral public, &	Nation				
	Engineering Disaste				- 11				
Unit-II:		and Review, developing			7 Hours				
		ald engineers be ethical?	• 1 1						
		tandards, patents, theses	-						
		Wikipedia & websites, M	easures of re	search impact, I	Interature				
review, pu	blication cost.								

Developing R	esearch Pla	n: Res	earch Propo	sals, findir	ng suitable i	esearch au	estions. The	elements	
Developing Research Plan: Research Proposals, finding suitable research questions, The elements of research proposals-title, details, budget, Design for outcomes-1D data, 2D data, 3D data, N-D									
data, The research tools- Experimental measurements, numerical modeling, theoretical derivations									
& Calculation		-				U,			
Case Studies (if any)Engineering dictionary, Shodhganga, The Library of Congress, Research gate, Google Scholar, Bibliometrics, Citations, Impact Factor, h-index, I-index, plagiarism, copyright infringement. Collect data for overbooking decision for demand and revenue management of flights									
				g decision I	or demand a	ind revenue			
	tatistical A			C	1			07 Hours	
Statistical A									
combining en						· •			
Statistics: exa	-	11-D1111	ensional Sta	ausues: pa	tial correla	tion coeffi	cients, exan	ipie, Null	
hypothesis tes	-	CN				1-4			
Case Studies	× • • •		U PSPP Too	01, SOFA, N	1051-Datap	0101		07 II	
	<u>ptimizatio</u>		<u> </u>	T		• • ,•		07 Hours	
Optimization uniform sam Optimization	pling, Mo method, mu	onte C ulti-par	Carlo optin cameter opti	nization, S mization m	Simplex O ethods, The	ptimization cost funct	n method,		
Case Studies			ogle Optimiz	ation Tools	, OpenMDA	40			
	ata Sampli	<u> </u>						07 Hours	
Sampling Fu									
Sampling Dis									
Standard Erro				Population	Mean (µ), E	stimating F	Population P	roportion,	
Sample Size a	ind its Deter								
Case Studies	(if any)		ermination of and Confid	-	•	the Approa	ich Based on	Precision	
Text Books:									
ISBN:	978-1-107-	61019-	-4		0	·	ge Universi 04, 2 nd Ed;	•	
	1-224-1522			87	0) -	-) -)		
Reference Bo									
		k "Ft	hics in End	vineering P	ractice and	Research"	, 2 nd Ed., C	ambridge	
	rsity Press;				idetiee and	researen	, 2 Du., C	unionage	
					thods in Co	mputer Sci	ience", Depa	artment of	
-			· · ·			1	91-26-9786		
E-books:		o ivituitu		erstey, • us		, 10 D 1(1)	20 2700	0 1	
	ch Methodol	ogv-							
	www.drnish		a.com/papers	Collection/	Research%2	0Methodolo	gy%20.pdf		
							g/BookUploa	ud/9.pdf	
MOOC Cour		~~		. —					
	uction to Re	esearch	- https://on	linecourses	.nptel.ac.in	/noc23 ge?	36/preview		
	rch Method		-		-	-	-		
			-		-	-	1		
Introduction to Research- <u>https://nptel.ac.in/courses/121106007</u> The CO-PO Mapping Matrix:									
Ine CO-PO Wapping Watrix:CO\POPO1PO2PO3PO4PO5PO6PSO1PSO2									
-	_	04			105	100	-		
CO1	2	-	2	2			1	1	
CO2	3	3		2			2	2	
CO3	3		2				1	3	
CO4	3	3	2	3			3	3	
CO5	2		2	2			2	2	

CO5

CO6

Matoshri College of Engineering & Research Centre, Nashik Master of Technology (MTech VLSI & Embedded Systems)

First Year Master of Technology (FY MTech VLSI & Embedded Systems)

24P1204: Embedded System Design

Teaching Scheme	Credit	Examination	Examination Head: TH				
Lectures: 4 Hrs/week	4	Examination	Examination Scheme & Marks				
		ISE	CAT :	20 Marks			
		ISE	CCE :	20 Marks			
		ESE	:	60 Marks			
Prerequisite:	Digital system and Microcontrollers						
Companion Course, if any:	Digital design and E	mbedded Syst	em lab				

Course Objectives:

- Introduce meaning of Embedded system
- Study ARM CORTEX Processor based Embedded System design for real-world applications
- Demonstrate the knowledge of interfacing with STM 32
- Explore Linux operating system and device driver.
- Enable the students to Understand embedded system development process and tools.
- To provide hands-on experience in real-time embedded systems applications using advanced processors and tools.

Course Outcomes: On completion of the course, learner will be able to: BL Analyze the definition and core characteristics of embedded systems to **CO1:** 4 identify and classify real-world applications. Design embedded systems using ARM Cortex processors and document the **CO2:** design process, analysis, and results through comprehensive technical reports 5 and presentations. Develop and apply interfacing techniques for STM32 microcontrollers in **CO3:** 6 embedded applications, demonstrating efficient hardware integration. Utilize and configure the Linux operating system and device drivers for 5 **CO4**: embedded systems, assessing their role in system performance. Independently design and implement innovative real-time embedded systems using modern processors and tools, focusing on research-driven **CO5**: 6 practical applications and problem-solving. Develop and implement innovative practical real-time embedded systems 6 **CO6:** using modern processors, tools, and techniques.

Unit-1:Introduction to Embedded system7 hrsDefinition and characteristics of embedded systems, Design metrics, Concept of Embedded system
design: Design challenge, Processor technology, IC technology, Design technology Development
platform - Arduino, Raspberry-PI, MSP430 (introduce IDE and board Details)7 hrs

Unit-II: ARM CORTEX Processors

ARM CORTEX series features, CORTEX A, R, M processors series comparison, Survey of CORTEX based controllers from various manufacturers, ARM-M3 Based Microcontroller LPC1768: Features, Architecture (Block Diagram & It's Description), System Control, Clock & Power Control, Pin Connect Block. CMSIS Standard, Bus Protocols like CAN, USB.

Unit-III: Embedded System Design with STM32

Architectural review of STM32F4XX MCU: Pin diagram, CPU, Memory, GPIO, Clock and Timer module, ADC-DAC module, Study of STM32F4 Development board, Software development tool SM32CubeIDE, Debugging with STM32CubeIDE, IDEs for STM32; Sample codes in C for

8 hrs

Toggling an LED, reading a switch and displaying it on an LED, display a message on the LCD using 8-bitmode and delay.

Unit-IV: Embedded Linux and Device Driver

Introduction, Embedded Linux Today, Open Source and the GPL, Kernel Versions, Kernel Source Repositories, using Git to Download a Kernel, Linux Kernel Construction, Kernel Build System, Kernel Configuration, BIOS versus boot-loader, Role of a Bootloader, A Universal Bootloader: Das U-Boot, Device Driver Basics, Linux File System Concepts.

Unit-V: Embedded System Design Case Studies

Embedded software development process and tools – introduction, host and target machine, linking and locating software, Getting Embedded software to target system, Issues in hardware and software design and co-design, Design Case Studies: Automated Meter Reading Systems (AMR), Digital Camera.

Text Books:

- 1]. **"Embedded system Design: A Unified Hardware/Software Introduction**", Frank Vahid, Tony D. Givargis, New Delhi: Wily India Pvt. Ltd.
- 2]. "ARM System Developer's Guide Designing and Optimizing System Software", Andrew Sloss, Dominic Symes, Chris Wright, Elsevier, 1st Edition
- 3]. "Mastering STM32", Carmine Noviello, Lean Publisher, 2nd Edition, 2018.
- 4]. **"Embedded Linux Primer:** A Practical, Real-World Approach", Christopher Hallinan, Prentice Hall, Second Edition, 2011.
- 5]. **"Embedded Systems: Architecture, Programming and Design**", Raj Kamal, 2nd ed. New Delhi: Tata McGraw Hill Education India Private Limited, 2008.

Reference Books:

- 1]. "An Embedded Software Primer", David E. Simon, Pearson Education, 2001.
- "STM32 Arm Programming for Embedded Systems: Using C Language with STM32", Shujen Chen, Muhammad Ali Mazidi, Eshragh Ghaemi, Nucleo, Micro DigitalEd., Illustrated Edition, 2018
- 3]. **"Embedded Systems Architecture**"A Comprehensive Guide for Engineers and Programmers", Tammy Noergaard, Elsevier, 2005.
- 4]. "Introduction to Embedded Systems", Shibu K V, TMH, 2nd Edition, 2009.

MOOC / NPTEL Courses:

1. NPTEL Course on "**Embedded System Design with ARM**", by Prof. Indranil Sengupta, and Prof. Kamalika Datta, IIT Kharagpur

Link of the Course: https://nptel.ac.in/courses/106105193

2.NPTEL Course on, **"Introduction to Embedded System Design"**, by Prof. D.V.Gadre, Prof.B.N. Subudhi IIT Jammu

Link of the course: https://nptel.ac.in/courses/108102169

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	2		2				2	1
CO2	2	3	2			2	3	2
CO3	3		2			3	2	3
CO4	2		3	2		2	2	3
CO5	3		3	3	3	3	3	3
CO6	3	2	3	3	3	3	3	3

The CO-PO Mapping Matrix:

8 hrs

		ge of Engineering & chnology (MTech VLSI			
F		Technology (FY MTech)
		Elective-I		,	4
	24P1205-A	: Micro Electrom	echanical	Systems	
Teaching S		Credit		ion Head: TH	
I caeming k	Senteme	Crean		ion Scheme & Ma	rks
T (04			20 Marks
Lectures: 4	4 Hrs/week	04	ISE	CCE: 2	20 Marks
			ESE	: (60 Marks
Prerequisi					
Companion Course Ob	n Course, if any:	Elective Course-I Lab			
• • •	To familiarize stude To develop the abili techniques To explore advanced To prepare students To enable students to	on techniques, and applicants with various MEMS of ity to design and simulated d topics and emerging tre for research and develop o apply MEMS technolog microsystems design.	devices and the e MEMS devi ends in MEMS ment in the fig	and their potentia	tools and l impact nology.
Course Ou					
On comple		arner will be able to:			BL
CO1:		lyze the evolution and and assess the impact of S technology.			
CO2:	Evaluate MEMS surface micromach	fabrication techniques ining, and high-aspect-ra report documenting the	atio micromac	hining, and presen	t 5
CO3:	Develop models of world applications	⁷ MEMS sensors and actu such as RF MEMS and c ile conducting independe	optical MEMS	s, with an emphasis	
CO4:	Apply principles Element Analysis	of MEMS design and p (FEA) tools, consider MEMS development, an	perform simu ing mechanic	lation using Finite al, electrical, and	1 5
CO5:	Investigate advance BioMEMS, energ	ed topics and emerging y harvesting, and MI ying future trends and i	EMS integrat	tion with CMOS	5 5
CO6:	Independently de	s ign, develop, and ev earch-driven approaches ering.			
Unit-1:	Introduction to M				7 hrs
		MEMS, Applications	of MEMS:	Automotive, bi	omedical,
Basic conc	-	mer electronics. cation: Photolithography als, and ceramics, Overvi	-	_	

Bulk micromachining: Isotropic and anisotropic etching, Surface micromachining: Sacrificial layer processes, thin-film deposition, High-aspect-ratio micromachining: LIGA, DRIE, Bonding techniques: Wafer bonding, anodic bonding, and fusion bonding, Packaging of MEMS devices: Challenges and solutions

Unit-III: Models MEMS Devices and Applications

Sensors: Pressure sensors, accelerometers, gyroscopes, and biosensors; Actuators: Electrostatic, thermal, piezoelectric, and magnetic actuators; RF MEMS: Switches, resonators, and filters; Optical MEMS: Micro-mirrors, optical switches, and MOEMS devices; Case studies of MEMS devices in real-world applications

Unit-IV: MEMS Design and Simulation

Principles of MEMS design: Mechanical, electrical, and thermal considerations; Finite Element Analysis (FEA) for MEMS: Modelling and simulation tools; Multiphysics simulation: Coupled-field analysis; Design for manufacturability and reliability; Case studies: Design and simulation of MEMS devices

Unit-V: Advanced Topics and Emerging Trends in MEMS

NEMS (Nanoelectromechanical Systems): Concepts and applications; BioMEMS: Lab-on-a-chip, microfluidics, and medical devices; Energy harvesting using MEMS; Integration of MEMS with CMOS technology; Future trends in MEMS: Flexible electronics, wearable MEMS, and IoT applications

Text Books:

- 1]. **"MEMS Mechanical Sensors**", Stephen Beeby, Graham Ensell, Michael Kraft and Neil White, Artech House Publications
- 2]. "Microsystem Design", Stephen D. Senturia, Kluwer Academic Publishers
- 3]. "Microsensors, MEMS and Smart Devices: Technology, Applications and Devices", Julian W. Gardner, Vijay K. Varadan, Julian Publications

Reference Books:

- 1]. "The MEMS Handbook", Mohamed Gad-el-Hak, Taylor & Francis Group
- 2]. **"Handbook of Silicon Based MEMS Materials and Technologies"**, Markku Tilli, Teruaki Motooka, Veli-Matti Airaksinen, Elsevier Inc.
- 3]. "MEMS: A Practical Guide to Design, Analysis, and Applications", Jan G. Korvink and Oliver Paul
- 4]. "**RF MEMS and Their Applications**", Vijay K. Varadan, K. J. Vinoy, and K. A. Jose, John Wiley & Sons Ltd

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	2		3	2			2	2
CO2	3	3	2			2	2	3
CO3	3		3	2		2	3	3
CO4	3		3	2		3	3	3
CO5	3		3	3	3	2	3	3
CO6	3	3	3	3	3	3	3	3

The CO-PO Mapping Matrix:

8 hrs

8 hrs

8 hrs

	Matoshri College of Engineering & Research Centre, Nashik Master of Technology (MTech VLSI & Embedded Systems)									
F		Technology (FY MTech V		-						
		Elective-I		-	4					
	24P1205-	B: VLSI Digital Sig	nal Proce	essing						
Teaching		Credit	Examination	n Head: TH						
0				n Scheme & Ma	rks					
Lectures:	4 Hrs/week	04	ISE	CCE : 2	20 Marks 20 Marks					
Prerequisi	to.	Digital Signal Processing, V	ESE	: 6	0 Marks					
	n Course, if any:	Elective course-1 lab	V LSI							
Course Ol										
 To To To To To To app 	provide a comprehen familiarize students explore low-power a develop proficiency introduce advanced equip students wi lications for real-wo	sive understanding of VLSI with various VLSI architectu and high-performance design in implementing DSP algori topics and emerging trends in the ability to integrate rld problem-solving.	tres for imple techniques f thms on VLS n VLSI DSP	ementing DSP alg for DSP systems. SI platforms. design.	gorithms.					
Course Ou					DI					
On comple		arner will be able to:	Ducascia	$(\mathbf{D}\mathbf{C}\mathbf{D}) = 1 + 1$	BL					
CO1:	Analyze the fundamentals of Digital Signal Processing (DSP) and the significance of VLSI technology in DSP system design, including low-power 4 and high-performance design considerations.									
CO2:	Document and p architectures for D	Document and present a comprehensive evaluation of various VLSI architectures for DSP, focusing on data flow, control flow graphs, pipelining, and parallel processing techniques, while assessing their impact on								
CO3:	Independently d methodologies for	evelop low-power and DSP systems, applying techn ile analyzing case studies of	iques such as	clock gating and						
CO4:	Conduct research systems, including	on the implementation of g FIR and IIR filters, FF cough case studies of adap	f DSP algo F, and DCT	rithms on VLSI	6					
CO5:	Investigate adva communication sy such as neuromorp	nces in VLSI DSP c stems, reconfigurable DSP s hic computing and deep learn	systems, and		5					
	problem-solving.	problem-solving.Image: Comparison of the second								
CO6:	Independently des systems, demonstr	ating a comprehensive unde	erstanding of							
	Independently des systems, demonstr and their practical	ating a comprehensive unde	erstanding of ology.							
Unit-1: Basics of I design: Ar	Independently des systems, demonstr and their practical Introduction to V Digital Signal Proces chitectures and met	ating a comprehensive unde applications in modern techn	ng LSI technology.	DSP algorithms ogy for DSP, DS d high-performa	6 8 hrs P system					

Data flow and control flow graphs, Pipelining and parallel processing techniques, Systolic array architectures, Retiming and unfolding, Folding transformation

Unit-III: Low-Power and High-Performance DSP Design

Power consumption in DSP systems, Power reduction techniques: Clock gating, power gating, and voltage scaling, Low-power design methodologies for DSP, High-performance design techniques: Pipelining, parallelism, and hardware accelerators, Case studies: Low-power and high-performance DSP applications

Unit-IV: Implementation of DSP Algorithms on VLSI

Implementation of FIR and IIR filters on VLSI, Fast Fourier Transform (FFT) and its VLSI implementation, Discrete Cosine Transform (DCT) and its VLSI implementation, Adaptive filters: LMS and RLS algorithms, Case studies: Practical VLSI implementation of DSP algorithms

Unit-V: Advances in VLSI DSP

VLSI design for wireless communication systems Design of reconfigurable DSP systems, Emerging trends in VLSI DSP: Neuromorphic computing, deep learning accelerators, ASIC and FPGA-based DSP design, Future directions and challenges in VLSI DSP

Text Books:

- 1]. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi, John Wiley, 1999
- 2]."Digital Integrated Circuits: A Design Perspective", Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, Prentice Hall ,2nd Edition

3]. **''Digital Signal Processing: A Practical Approach''**, Emmanuel C. Ifeachor and Barrie W. Jervis, Prentice Hall, 2nd Edition,2002.

Reference Books:

- 1]."Digital Signal Processing: Principles, Algorithms, and Applications", John G. Proakis and Dimitris G. Manolakis, Prentice Hall, 2nd Edition,1996.
- 2]. **''Design of High-Performance Microprocessor Circuits''**, Anantha Chandrakasan, William J. Bowhill, and Frank Fox, Willy, IEEE press,2001.
- 3]."CMOS VLSI Design: A Systems Perspective", Neil H.E. Weste, David Money Harris, Addison-Wesley, 4th Edition, 2011.

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	2		3			2	3	2
CO2	2	3	3			2	2	3
CO3	3		3			3	3	3
CO4	3		3	2		2	3	3
CO5	3		3	3	3		3	3
CO6	3	2	3	3	3	3	3	3

The CO-PO Mapping Matrix:

8 hrs

7 hrs

Matoshri College of Engineering & Research Centre, Nashik Master of Technology (MTech VLSI & Embedded Systems)

First Year Master of Technology (FY MTech VLSI & Embedded Systems)

Elective-I 24P1205-C: Low Power IC Design

241 1205-C. LOW I OWEI IC DESIGN									
Teaching Scheme	Credit	Examination Head: TH							
		Examination Scheme & Marks							
Lastunas 4 Unstructu	4	ISE	CAT :	20 Marks					
Lectures: 4 Hrs/week	4	ISE	CCE :	20 Marks					
		ESE	:	60 Marks					
Prerequisite:		<u>.</u>							
Companion Course, if any:	Elective Course-I Lab								

Course Objectives:

- To provide a comprehensive understanding of the importance and challenges of low power IC design.
- To familiarize students with various techniques to reduce power consumption at different levels of design abstraction.
- To develop proficiency in designing low power circuits and systems using state-of-the-art tools and methodologies.
- To explore advanced topics and emerging trends in low power IC design.
- To prepare students for research and development in the field of low power electronics.
- To enable students to integrate low power design techniques into the overall IC design process, ensuring energy efficiency across different applications.

Course Outcomes:

course or							
On comple	tion of the course, learner will be able to:	BL					
CO1:	Analyze the importance of low power design in modern electronics, identifying power dissipation mechanisms and estimation techniques used in digital circuits.	4					
CO2:	Document and present the evaluation of circuit-level low power design techniques, such as dynamic voltage and frequency scaling, to optimize power consumption in digital systems.	5					
CO3:	Develop architectural-level low power design strategies, including clock gating and energy-efficient memory design, to enhance overall system performance.	6					
CO4:	Conduct independent research on and implement system-level power management techniques, including hardware-software co-design and power-aware communication protocols, in real-world applications.	6					
CO5:	Investigate emerging low power technologies and their applications in various domains, focusing on design automation tools and future trends in low power IC design, while presenting findings in a comprehensive technical report.	5					
CO6:	Independently design and evaluate innovative low power integrated circuits, demonstrating a comprehensive understanding of low power design techniques and their practical applications	6					
Unit-1:	Introduction to Low Power Design	8 hrs					
-	nce of low power design in modern electronics; Sources of power dissipation in	U					
	Power dissipation mechanisms: Dynamic, static, and short-circuit power;						
	estimation techniques: Gate-level, RTL-level, and system-level Metrics for power efficiency:						
Energy p	per operation, power-delay product						

Unit-II:	Low Power Design Techniques at the Circuit Level	8 hrs
gating a	or sizing, optimization for low power, Dynamic voltage and frequency scand multi-threshold CMOS, Adaptive body biasing, Leakage power reduction ansistors, stack forcing, and reverse body biasing	
Unit-III:	Low Power Design Techniques at the Architectural Level	8 hrs
design:	ating and power gating Operand isolation and data path optimization Low pow SRAM, DRAM, and non-volatile memories Energy-efficient arithmetic un ers, and dividers Power-aware design of FPGAs and ASICs	•
Unit-IV:	Low Power Design Techniques at the System Level	7 hrs
devices,	level power management: Hardware-software co-design, P nication protocols and interfaces, Low power techniques for wireless syste Power management in mobile and wearable devices Case studies: Low power reld applications	
Unit-V:	Advances in Low Power IC Design	7 hrs
for bio accelera	ng low power technologies: F in FETs, TFETs, and NEM relays, Ultra-low pomedical and implantable devices, Power-efficient design for machinators Design automation tools for low power IC design Future trends and cover IC design	ne learning
Text Bool	۲S:	
-	w-Power Digital VLSI Design: Circuits and Systems ", Abdellatif Bellaou amed I. Elmasry, Springer Science + Business Media, 1995.	uar and
_	w-Power High-Resolution Analog to Digital Converters: Design,	, Test and
3]. "Lo	bration'', Amir Zjajo, Springer Science + Business Media, 2011. w-Power CMOS Circuits: Technology, Logic Design and CAD Tools let, CRC Press,2006.	", Christian
Reference		
1]. "Lo	w-Power VLSI Circuits and Systems", Ajit Pal, Springer, 2015.	
	w Power VLSI Design", Angsuman Sarkar, Swapnadip De, Manash Chand	da. Chandai
-	nar Sarkar, DE Gruyter, 2016.	

The CO-PO Mapping Matrix:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2					
CO1	2		3			2	3	2					
CO2	3	3	2			2	2	3					
CO3	3		3			3	3	3					
CO4	3		3	3	3	2	3	3					
CO5	3		3	3	2		3	3					
CO6	3	3	3	3	3	3	3	3					

201		chnology (MTech VLSI			<u> </u>	
F	irst year master of	Technology (FY MTech	VLSI & Er	ndeadea Systems)	
		Elective-I				
	24P120	15-D: System Desig				
Teaching S	Scheme	Credit	Examinat	ion Head: TH		
			Examinat	ion Scheme & Ma	arks	
Lectures.	4 Hrs/week	4	ISE	CAT:	20 Marks	
Lectures.	+ 111 <i>5/</i> WCCK				20 Marks	
			ESE	ESE :	60 Marks	
Prerequisi		Digital Circuits/VLSI De	esign			
-	n Course, if any:	Elective Course-I Lab				
Course Ob	0	nsive understanding of FP				
 To To To To 	develop proficiency explore advanced FF prepare students for equip students with	with FPGA design tools, 1 in implementing complex PGA architectures and des research and development the ability to optimize FPG fficiency in performance,	algorithms a ign techniqu t in FPGA-ba GA-based de	and systems on FP es. ased system design signs for specific	GAs.	
Course Ou						
		earner will be able to:			BL	
CO1:	Analyze the architecture of Field-Programmable Gate Arrays (FPGAs), including CLBs, IOBs, interconnects, and routing resources, and compare FPGA families from vendors such as Xilinx, Intel, and Lattice, assessing their suitability for specific design requirements.					
CO2:	Design and implen design tools, preser	nent FPGA-based systems nting the complete design ent the synthesis, implement	process through	ugh technical	. 6	
CO3:		signs for performance, are			4	
CO4:		into embedded systems a			^g 5	
CO5:	FPGA technolog	lent research on advanced gy, including machine nputing, to contribute to	learning	accelerators and	d 5	
CO6:	Independently inv parallelism, and lo	estigate and apply advance w-power methodologies to al challenges in performa e solutions.	o optimize FI	PGA-based designs	5, 5	
Unit-1:	Introduction to F	PGA Technology			8 hrs	
interconnec and others	cts, and routing reso , FPGA design fle	able Gate Arrays (FPG, urces, FPGA families and ow: Design entry, synth and VHDL for FPGA des	l vendors: X nesis, impler	ilinx, Intel (Altera), Lattice,	

FPGA design software: Xilinx Vivado, Intel Quartus Prime, and others, Design constraints and timing analysis, IP cores and FPGA design reuse, Simulation and verification of FPGA designs, Design for testability (DFT) techniques for FPGAs

Unit-III:	Advance	Advanced FPGA Architectures and Design Techniques								
High-level	synthesis	(HLS)	for	FPGA	design,	Design	optimization	techniques:	Pipe	lining,
parallelism,	and resor	urce sha	aring,	, Imple	menting	complex	x algorithms	on FPGAs: H	FFT,	image
processing,	and digita	l signal	proce	essing, 1	FPGA-ba	ased emb	bedded system	s: ARM-base	d So	Cs and

MicroBlaze/Nios II processors, Case studies: Real-world applications of advanced FPGA designs

Unit-IV: FPGA-Based System Design

7 hrs

7 hrs

FPGA-based prototyping and emulation, System integration using FPGAs: Interfacing with peripherals and sensors, Communication protocols on FPGAs: Ethernet, PCIe, USB, and CAN Real-time operating systems (RTOS) on FPGAs, FPGA-based co-processing and acceleration techniques

Unit-V: Advanced Topics in FPGA Design

Reconfigurable computing with FPGAs, FPGA-based machine learning accelerators, Low-power design techniques for FPGAs, Security considerations in FPGA designs, Emerging trends and future directions in FPGA technology.

Text Books:

- 1. "FPGA-Based System Design", Wayne Wolf
- 2. "Digital Design and Computer Architecture", David Harris and Sarah Harris
- 3. "FPGA Prototyping by VHDL Examples: Xilinx Spartan-6 Version", Pong P. Chu
- 4. "Digital Design: Principles and Practices", John F. Wakerly
- 5. "FPGA-Based System Design", Madhavi Agrawal

Reference Books:

- 1. "FPGA-Based Digital Signal Processing", Roger Woods, John McAllister, and Gaye Lightbody
- 2. "FPGA Prototyping for SoC Verification", Andrew G. Schmidt, Jingcao Hu, and Greg Tumbush
- 3. "Digital Design and Computer Architecture: ARM Edition", Sarah Harris and David Harris
- 4. "FPGA Implementation of Artificial Neural Networks", Tarek S. Abdelrahman
- 5. "Programming FPGAs: Getting Started with Verilog", Simon Monk

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	2		3			2	3	3
CO2	2	3	2			2	3	3
CO3	3		3			3	3	3
CO4	3		3	3	3	2	3	3
CO5	3		3	3	2		3	3
CO6	3	2	3	3	3	3	3	3

The CO-PO Mapping Matrix:

-		echnology (MTech V	LSI & Embe	· · · · ·	
F	irst Year Master o	f Technology (FY M	Tech VLSI &	& Embedded Systems))
	24P1206: Dig	gital design and	Embedd	ed system Lab	
Feaching		Credit		nation Head: PR	
	4 Hrs/week	2	Examin ISE : ESE:	ation Scheme & Marks 20 Marks 30 Marks	
Course Ot	jectives:		2.521		
 carr sim Dev eva rese Per cita rele Ma mic eml Des sen con Apj 	rier concentration a sulations to evaluate velop critical researce luating experimenta- earch findings form statistical and tions and key perfo- evance of research w ster embedded sys- crocontrollers, imple- bedded applications sign and implement sor-based systems, on munication protoco- ply advanced program	nd current flow mech these properties in in ch skills by analyzing al verification method citation analysis of pur rmance metrics, and a vork stem design by wo ementing and simulat t real-time embedded clap detection, and aut ols effectively amming techniques a	hanisms, and atrinsic and ex academic lite ds, and assess ublished resea apply these in orking with ing hardware d systems for tomated meter	emiconductor physics, apply mathematical m trinsic semiconductors rature in the field of en- ing the accuracy and v rch articles, identifying sights to evaluate the in ARM Cortex-M3 and software integration for practical applications reading, integrating se ided development tool demonstrating problem	odels and gineering validity of g trends in mpact and f STM32 or various s, such as ensors and s to build
skil	ls in real-world scen	-		demonstrating problem	
Course Ou					
In comple		earner will be able to:			DI
CO1:					BL
	extrinsic semicon		tration variat	ions in intrinsic and	BL 4
CO2:	-	ductors using Fermi-I AB models to simu nd evaluate drift and o	tration variat Dirac distribut late current		
CO2: CO3:	semiconductors and field and concentr Critically evaluat	ductors using Fermi-I AB models to simular and evaluate drift and of ation gradients. e research papers in the	tration variat Dirac distribut late current diffusion curr ne engineering	ion and MATLAB. flow mechanisms in	4
	semiconductors and field and concentre Critically evaluat the verification conclusions. Conduct a thorou	ductors using Fermi-I AB models to simular and evaluate drift and of ration gradients. e research papers in the methods and assess gh statistical and num	tration variat Dirac distribut late current diffusion curr ne engineering ing the valid	ion and MATLAB. flow mechanisms in ents based on electric g discipline, analyzing lity of the research s of published journal	4
СО3:	semiconductors and field and concentral Critically evaluat the verification conclusions. Conduct a thorou articles in the field Design and imple M3 and STM32	ductors using Fermi-I AB models to simular and evaluate drift and or ration gradients. e research papers in the methods and assess gh statistical and numed, identifying key methods ment embedded systemicrocontrollers, der	tration variat Dirac distribut late current diffusion curr ne engineering ing the valid nerical analysi trics and comp em application	ion and MATLAB. flow mechanisms in ents based on electric discipline, analyzing lity of the research	4 6 5
CO3: CO4:	semiconductors and field and concentration Critically evaluat the verification conclusions. Conduct a thorou articles in the field Design and imple M3 and STM32 software for hardwork Independently de practical application	ductors using Fermi-I AB models to simular and evaluate drift and of ration gradients. e research papers in the methods and assess gh statistical and numed, identifying key method ment embedded systemicrocontrollers, der ware control. esign and evaluate	tration variat Dirac distribut late current diffusion curr ne engineering ing the valid nerical analysi trics and comp em application monstrating the real-time emon	ion and MATLAB. flow mechanisms in ents based on electric g discipline, analyzing lity of the research s of published journal paring citation trends. Is using ARM Cortex- ne ability to develop bedded systems for systems, showcasing	4 6 5 5

The laboratory assignments are to be submitted by student in the form of journal. Journal consists of prologue, Certificate, table of contents, and handwritten write-up of each assignment (Title, Objectives, Problem Statement, Outcomes, software & Hardware requirements, Date of Completion, Assessment grade/marks and assessor's sign, Theory-Concept in brief, features of tool/framework/language used, Design, test cases, conclusion. Program codes with sample output of all performed assignments are to be submitted as softcopy.

As a conscious effort and little contribution towards Green IT and environment awareness, attaching printed papers as part of write-ups and program listing to journal may be avoided. Use of DVD containing students programs maintained by lab In-charge is highly encouraged. For reference one or two journals may be maintained with program prints at Laboratory.

Guidelines for Lab /TW Assessment

Continuous assessment of laboratory work is done based on overall performance and lab assignments performance of student. Each lab assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

Guidelines for Laboratory Conduction

List of laboratory assignments is provided below for reference. The instructor is expected to frame the assignments by understanding the prerequisites, technological aspects, utility and recent trends related to the topic. The assignment framing policy need to address the average students and inclusive of an element to attract and promote the intelligent students. The instructor may set multiple sets of assignments and distribute among batches of students. It is appreciated if the assignments are based on real world problems/applications. Encourage students for appropriate use of coding style, proper indentation and comments. **Use of open-source software and recent version is to be encouraged**. In addition to these, instructor may assign one real life application in the form of a mini-project based on the concepts learned. Instructor may also set one assignment or mini-project that is suitable to respective branch beyond the scope of syllabus.

ł	Suggested List of Laboratory Experiments/Assignments			
(Any 2 laboratory assignments to be performed from each group)				
Sr.	Problem Statement CO			
No.	Perform any 2 assignments from each group	Mapping		
	Group A: Physics of VLSI Devices (24P1201)			
1.	 Carrier Concentration and Fermi-Dirac Distribution(Unit 1) Objective: Analyze the carrier concentrations in intrinsic and extrinsic semiconductors using Fermi-Dirac distribution. Tasks: Implement MATLAB scripts to calculate and plot the carrier concentration as a function of temperature for intrinsic semiconductors. Analyze the Fermi level and carrier concentration in extrinsic semiconductors (n-type and p-type) as a function of doping concentration. Compare the results for direct and indirect semiconductors. 	CO1, CO2		
2.	 Current Flow Mechanisms: Drift and Diffusion Currents (Unit 1) Objective: Simulate and analyze the current flow in semiconductors due to drift and diffusion mechanisms. Tasks: Use MATLAB to simulate drift current density as a function of electric field and carrier mobility. Simulate diffusion current based on concentration gradients. Solve the continuity equation to observe how charge carriers evolve over time in a semiconductor under varying conditions. 	CO1, CO2		
3.	 P-N Junction I-V Characteristics (Unit 2) Objective: Analyze the static current-voltage characteristics of a p-n junction. Tasks: Write a MATLAB code to solve the Poisson equation for a p-n junction under forward and reverse bias conditions. 	CO1, CO2		

	 Plot the I-V characteristics for both cases and identify the depletion region behavior. Simulate the effect of temperature and doping concentration on the I-V characteristics. MOS Capacitor C-V Characteristics (Unit 3) 	
	 Simulate the effect of temperature and doping concentration on the I- V characteristics. 	
	V characteristics.	
		•
	VIUN Canacitor C-V Characteristics (1)nit 3)	
	Objective: Study the capacitance-voltage characteristics of a MOS	
	capacitor in different regions (accumulation, depletion, inversion).	
	• Tasks:	
4	• Develop MATLAB simulations to model the MOS capacitor's C-V	CO1,
4.	characteristics as a function of gate voltage.	CO2
	• Explore the effect of oxide thickness and substrate doping	
	concentration on the C-V curve.	
	• Discuss how interface charges and oxide charges affect the threshold	
	voltage.	
	Impact of Short Channel Effects on MOSFET Performance (Unit 4)	
	Objective: Simulate short channel effects (SCE) like Drain Induced	
	Barrier Lowering (DIBL) and Punch-through.	
F	• Tasks:	CO1,
5.	• Implement MATLAB models to simulate MOSFET I-V characteristics and observe SCEs such as channel length modulation and DIBL.	CO2
	 Analyze the effect of scaling the channel length on device performance 	
	(threshold voltage shift, saturation current).	
	 Compare the results with long-channel MOSFET behavior. 	
	Gate Leakage and Tunneling Effects in UDSM Transistors (Unit 5)	
	Objective: Analyze gate leakage and tunneling effects in ultra-deep	
	submicron (UDSM) transistors.	
	• Tasks:	CO1,
6.	• Use MATLAB to model gate leakage current as a function of gate	CO1, CO2
	oxide thickness for UDSM transistors.	02
	• Simulate the effect of high-k and low-k dielectrics on gate leakage and	
	threshold voltage.	
	 Investigate the impact of tunneling effects on device reliability. Group B: Research Methodology (24P1203) 	
	Use an academic web search to locate a journal paper which describes a	
	design outcome in your field of interest (i.e. your engineering discipline). You must enter several keywords which relate to your topic.	
	Read the paper and, using your own words, demonstrate your	
	understanding of the paper by: Brief Contribution Performance metric,	
	data set, comparative analysis and outcomes	
1	a. Writing out the major conclusions of the paper	СОЗ,
1.	b. Outlining the verification method(s) used to support these conclusions	CO4
	c. Describing the author's reflective comments on the quality of the design	
	(positive and negative). The positive and negative environmental impacts;	
	After reading a published research paper, write down the research question	
	you think the author have addressed in undertaking this research.	
	Do you think the paper adequately supports the conclusions reached in	
	addressing the question?	
	Consider a journal article in your discipline that was published	
	approximately five years ago. Note the keywords and type them into one of the web based academic search angines (e.g. googlescholar com). Does	CO3
2.	of the web-based academic search engines (e.g. googlescholar.com). Does the original article appear in the search results? How many citations does	CO3,
	field?	
2.	the original article appear in the search results? How many citations does this article have? Have the same authors published further work in this	CO4

	Compare the citations of this paper with those from the most highly cited paper in the search results? How many citations does this highly cited	
3.	article have? If this paper was published before your original article, is it cited in your article? Do you think this high-cited paper should have been listed as a reference in your original article? Give reasons for your decision. Read a journal paper from your discipline. Following the format of patents, write out one or more important outcomes from the paper in terms of one or more Patent Claims 1, 2 These claims must not only be new, they must be not-obvious from previous work	CO3, CO4
4.	 a) Literature Review Quality: Using a Journal paper selected in your engineering discipline of interest, write a 400-word evaluation of the quality of Literature Review. In particular, review the quality and relevance of cited papers, the comments made on those papers' contribution to the general field, and any omission of papers which are of major importance in the field. b) Develop a new research proposal from a published paper: From selected published Journal paper, read the paper. In particular read the discussion and conclusion section and find Suggestions for further work. Apply one of the question words (How? Why? What? When?) and write one or more research questions arising from this paper. This can be used as guide to help you to develop your own research project proposal 	CO3, CO4
5.	a) Download a set of weather data from the Internet covering the temperature and atmospheric pressure over a four-day period. Present the data using 2D and 3D plots, and so deduce if the weather conditions are trending either higher or lower over this four-day period. (Possible web sites include http://www.bom. gov.au/climate/ data/ and http://www.silkeborg-vejret.dk/english/ regn.php).	CO3, CO4
6.	 a) Numerical modeling: Find a paper in which numerical modeling has been used to verify the experimental results. Comment on the differences between the experimental and modeling results. Have the authors commented on the accuracy of the experimental and modeling procedures? What suggestions do you have to improve the quality of the modeling reported in the paper? b) Statistical review: In your engineering discipline review a published paper which includes a statistical analysis. Write a brief report on the statistical methods used. Can you suggest an improved statistical analysis? Suggest some additional parameters that might have been measured during the data acquisition stage and so explain how you would analyze the total data set to deduce the influence (and statistical significance) of these additional measurements. 	CO3, CO4
	Group C: Embedded System Design (24P1204)	
1.	 Embedded System Design Using Arduino (Unit 1) Objective: Learn the basics of embedded system design by exploring the Arduino platform. Task: Set up an Arduino IDE, write a simple C code to read an analog sensor value (e.g., temperature sensor), and display it on an LCD connected to the Arduino. Install Arduino IDE and set up the development environment. Interface an analog sensor and LCD with Arduino. Write a C program to read the sensor data and display it. Experiment with different sensors and test the real-time behavior. 	CO5, CO6
2.	ARM Cortex-M3 GPIO Control using LPC1768 (Unit 2) Objective: Explore the ARM Cortex-M3 processor, specifically the LPC1768 microcontroller.	CO5, CO6

		,
	• Task: Write a C program using CMSIS libraries to toggle GPIO pins	
	and control an LED.	
	Set up the LPC1768 microcontroller development environment.	
	• Use CMSIS libraries for GPIO control.	
	• Write and simulate a code to toggle an LED connected to a GPIO	
	pin at regular intervals.	
	• Analyze the behavior using a debugger.	
	STM32 LED Control with STM32CubeIDE (Unit 3)	
	Objective: Design and implement a basic embedded system using	
	STM32F4XX microcontroller.	
	• Task : Write a C code using STM32CubeIDE to toggle an LED with a	
3.	delay.	CO5,
5.	 Set up STM32CubeIDE for STM32F4XX MCU. 	CO6
	 Configure GPIO for LED toggling using STM32CubeMX. 	
	• Implement a delay function in the program to control the toggling	
	speed.	
	• Test and validate using the STM32F4 development board.	
	Building an Embedded Linux Kernel (Unit 4)	
	Objective: Gain experience in building and configuring an embedded	
	Linux kernel.	
	• Task : Download and configure a Linux kernel for a specific embedded	
	platform (e.g., Raspberry Pi) and boot it using a bootloader.	CO5,
4.	• Use Git to download a specific kernel version from the repository.	CO6
	 Configure the kernel using the appropriate build tools. 	000
	• Build and deploy the kernel on an embedded system (Raspberry Pi).	
	• Set up the bootloader (U-Boot) and validate the boot process.	
	Automated Meter Reading (AMR) System Design (Unit 5)	
	Objective: Implement a basic AMR system using a microcontroller and	
	wireless communication protocol.	
	• Task : Write a C code to read energy meter data using UART and	005
5.	transmit the data wirelessly using RF modules.	CO5,
	• Interface the energy meter with the microcontroller using UART.	CO6
	• Set up the wireless RF module for data transmission.	
	• Write a program to periodically read and transmit the data to a	
	remote system.	
	• Analyze the power consumption of the system.	
	Clap Detection and Counting Using STM32 Microcontroller	
	Objective: Interface a microphone and a 7-segment LED display with an	
	STM32 microcontroller to detect claps and display the number of claps	
	on the 7-segment display.	
	• Task: Write a C program using STM32CubeIDE to detect claps via a	
	microphone input and display the clap count on a 7-segment LED	
	display.	
4	• Set up the STM32CubeIDE for the STM32 microcontroller.	CO5,
6.	• Interface the microphone with the STM32 microcontroller to	CO6
	detect sound levels.	
	• Connect and configure a 7-segment LED display to the GPIO pins	
	of the STM32.	
	• Implement a sound detection algorithm to identify claps based on	
	amplitude thresholds.	
	 Write the code to increment the count with each detected clap and 	
	display the number of claps on the 7-segment display.	
	i display the number of claps on the 7-segment display.	

Matoshri College of Engineering & Research Centre, Nashik Master of Technology (MTech VLSI & Embedded Systems)

First Year Master of Technology (FY MTech VLSI & Embedded Systems)

24P1207: Elective I Lab

Teaching Scheme	Credit	Examination Head: PR
Practical: 2 Hrs/week	1	Examination Scheme & Marks ISE : 20 Marks ESE: 30 Marks

Course Objectives:

- Understand the principles and applications of microelectromechanical systems (MEMS) and gain hands-on experience in simulating their behavior through various sensors and actuators.
- Equip students with the knowledge and skills to design, implement, and evaluate digital signal processing algorithms using VLSI design techniques, emphasizing performance optimization.
- Develop proficiency in power estimation techniques and low-power design methodologies, enabling students to create energy-efficient integrated circuits.
- Foster skills in developing and implementing FPGA designs using HDL, while enabling students to analyze timing, performance, and resource utilization of their designs.
- Provide students with the capability to implement advanced algorithms in FPGA systems, focusing on optimization techniques to enhance performance and resource efficiency.
- Encourage students to investigate and understand the latest trends and technologies in lowpower design, MEMS, and FPGA applications, preparing them for advanced system development challenges.

Course Ou	itcomes:	
On comple	tion of the course, learner will be able to:	BL
CO1:	Analyze and simulate the behavior of sensors, actuators, and mechanical systems in microelectromechanical applications.	4
CO2:	Design and implement digital signal processing algorithms and evaluate their performance in VLSI systems.	6
CO3:	Apply power estimation techniques and optimize low-power design methodologies for integrated circuits.	3
CO4:	Develop and implement FPGA designs using hardware description languages and analyze their timing and performance characteristics.	4,6
CO5:	Implement and optimize complex algorithms in FPGA systems, demonstrating advanced design techniques and methodologies.	3,5
CO6:	Explore emerging technologies and trends in low-power design, MEMS, and FPGA applications for advanced system development.	6

Guidelines for Instructor's Manual

The instructor's manual is to be developed as a hands-on resource and reference. The instructor's manual need to include prologue (about University/program/ institute/ department/foreword/ preface etc.), copy of curriculum, conduction & Assessment guidelines, topics under consideration-concept, objectives, outcomes, set of typical applications/assignments/ guidelines, and references.

Guidelines for Student's Lab Journal

The laboratory assignments are to be submitted by student in the form of journal. Journal consists of prologue, Certificate, table of contents, and handwritten write-up of each assignment (Title, Objectives, Problem Statement, Outcomes, software & Hardware requirements, Date of Completion, Assessment grade/marks and assessor's sign, Theory-Concept in brief, features of tool/framework/language used, Design, test cases, conclusion. Program codes with sample output of all performed assignments are to be submitted as softcopy.

10me

As a conscious effort and little contribution towards Green IT and environment awareness, attaching printed papers as part of write-ups and program listing to journal may be avoided. Use of DVD containing students programs maintained by lab In-charge is highly encouraged. For reference one or two journals may be maintained with program prints at Laboratory.

Guidelines for Lab /TW Assessment

Continuous assessment of laboratory work is done based on overall performance and lab assignments performance of student. Each lab assignment assessment will assign grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

Guidelines for Laboratory Conduction

List of laboratory assignments is provided below for reference. The instructor is expected to frame the assignments by understanding the prerequisites, technological aspects, utility and recent trends related to the topic. The assignment framing policy need to address the average students and inclusive of an element to attract and promote the intelligent students. The instructor may set multiple sets of assignments and distribute among batches of students. It is appreciated if the assignments are based on real world problems/applications. Encourage students for appropriate use of coding style, proper indentation and comments. **Use of open-source software and recent version is to be encouraged**. In addition to these, instructor may assign one real life application in the form of a mini-project based on the concepts learned. Instructor may also set one assignment or mini-project that is suitable to respective branch beyond the scope of syllabus.

Suggested List of Laboratory Experiments/Assignments (Any 5 laboratory assignments to be performed)			
Sr. No.	Problem Statement		
24P1205 (A): Micro Electromechanical Systems			
1.	 Simulation and Analysis of Sensors and Actuators for Micro Motions <i>Objective:</i> Simulate and analyze the behavior of various sensors and actuators to understand their responses to micro-scale motions. Task 1: Select a sensor (e.g., piezoelectric or capacitive sensor) and simulate its response to micro-motion inputs using simulation software. Simulate the behavior of an actuator (e.g., electrostatic or thermal actuator) in response to small displacements. Analyze the correlation between input motion and the sensor/actuator response, focusing on sensitivity and accuracy in detecting micro-motions. 	CO1, CO2	
2.	 Simulation and Analysis of Gear Motion Characteristics <i>Objective:</i> Simulate and analyze the motion characteristics and mechanical principles of gears. Task 1: Create a gear model using simulation software and analyze its rotational motion characteristics. Simulate the interaction between different gear types (spur, helical) and study the effects of varying torque and speed. Evaluate the mechanical efficiency and stress distribution in the gears during operation under load. 	CO1, CO2	
3.	 Demonstration of Hooke's Law Using an Actuator Objective: Demonstrate and understand Hooke's Law by measuring the force exerted by a spring when compressed or extended using an actuator. Task 1: Set up a virtual or physical experiment using a linear actuator to apply a force to a spring and measure the extension/compression. Record the force applied and the corresponding displacement, then plot the force vs. displacement curve to verify Hooke's Law. 	CO1, CO2	

	• Task 3: Analyze the relationship between force and displacement and identify the spring constant for different types of springs.	
4.	 MEMS Packaging and Bonding Techniques Objective: Analyze challenges in MEMS packaging and bonding. Task 1: Compare different bonding techniques (wafer bonding, anodic bonding, fusion bonding) and their application in MEMS packaging. Research challenges in packaging MEMS devices and propose solutions for high-reliability packaging. Write a report on advancements in MEMS packaging technologies. 	CO1, CO6
5.	 Sensor Design and Simulation Objective: Design and simulate pressure sensors and accelerometers. Task 1: Use FEA software to model a MEMS pressure sensor, analyzing its mechanical properties. Design an accelerometer in simulation software and analyze its performance in different conditions (e.g., varying pressure). Compare the performance of different MEMS sensors (e.g., gyroscopes, biosensors) using simulation. 	CO1, CO6
6.	 MEMS RF Devices and Case Studies Objective: Analyze RF MEMS devices, such as switches and resonators. Task 1: Simulate a MEMS switch using RF software tools and study its switching behavior. Design a MEMS resonator and analyze its frequency response. Write a case study on the application of RF MEMS in telecommunications. 	CO1, CO6
	24P1205 (B): VLSI Digital Signal Processing	
1.	 DSP System Design and Algorithm Simulation Objective: Implement and simulate basic DSP algorithms using VLSI design principles. Task: Design and simulate a basic FIR filter using MATLAB or Python. Simulate an IIR filter and compare its performance to the FIR filter. Analyze the power and performance trade-offs for both filters when implemented in VLSI architectures. 	CO2, CO4
2.	 Pipelining and Parallel Processing in DSP Systems Objective: Implement pipelining and parallel processing techniques in DSP systems for performance optimization. Task: Design a simple DSP system with basic pipelining for a FIR filter. Implement parallel processing for the same system and compare the latency and throughput improvements. Analyze the impact of pipelining and parallelism on power consumption and performance. 	CO2, CO4
3.	 VLSI Implementation of FFT Algorithm Objective: Implement the Fast Fourier Transform (FFT) algorithm in VLSI and analyze its performance. Task: Design and simulate a 4-point FFT using HDL (Verilog/VHDL). Implement the FFT in hardware using FPGA or ASIC and measure the performance. Evaluate the power consumption of the FFT implementation for real-time DSP applications. 	CO2, CO4
4.	VLSI Implementation of Discrete Cosine Transform (DCT) <i>Objective:</i> Implement the DCT algorithm in VLSI for applications in	CO2, CO5

	• Task: Write HDL code to implement the 2D DCT algorithm and	
	• Task: while HDL code to implement the 2D DCT algorithm and simulate its performance.	
	• Optimize the design for low-power and high-performance applications.	
	• Analyze the computational complexity and power consumption of the	
	DCT algorithm.	
	Adaptive Filter Implementation (LMS Algorithm)	
	<i>Objective:</i> Implement the LMS adaptive filtering algorithm on VLSI for	
	noise cancellation applications.	
	• Task: Design and simulate the LMS adaptive filter using HDL	
5.	(Verilog/VHDL).	CO2,
5.	• Implement the filter on FPGA or ASIC and validate its performance in	CO5
	noise-cancellation tasks.	
	\circ Evaluate the power and area trade-offs for the adaptive filter	
	implementation.	
	Neuromorphic Computing and DSP Applications	
	<i>Objective:</i> Explore neuromorphic computing concepts in DSP and	
	implement a simple neural network on VLSI.	
(• Task: Implement a basic feedforward neural network for pattern	CO2,
6.	recognition using HDL.	CO6
	• Simulate and analyze the performance of the neural network in	
	comparison to traditional DSP algorithms.Investigate the power consumption and scalability of neuromorphic	
	computing architectures in VLSI.	
	24P1205 (C): Low Power IC Design	
	Power Estimation Techniques in Digital Circuits	
	<i>Objective:</i> Estimate power dissipation in digital circuits using various	
	power estimation techniques.	
	• Task: Simulate a simple digital circuit (e.g., a full adder) and estimate	
	its dynamic, static, and short-circuit power dissipation using gate-level	CO3,
1.	techniques.	CO5, CO5
	• Perform RTL-level power estimation on a small processor core and	005
	compare with gate-level results.	
	• Use system-level power estimation tools to analyze power efficiency	
	metrics such as energy per operation and power-delay product.	
	Transistor Sizing and Power Optimization	
	<i>Objective:</i> Optimize transistor sizing for power efficiency in CMOS	
	circuits.	
	• Task: Implement and simulate a CMOS inverter and vary transistor	
-	sizes to minimize dynamic and leakage power dissipation.	CO3,
2.	• Analyze the impact of transistor sizing on circuit speed and power-delay	CO5
	product.	
	• Experiment with different CMOS logic gates (e.g., NAND, NOR) to	
	understand the effects of transistor sizing on power and performance.	
	Dynamic Voltage and Frequency Scaling (DVFS)	
	<i>Objective:</i> Explore DVFS techniques to reduce power consumption in	
	digital systems.	
	• Task: Simulate a processor core with different voltage and frequency	CO3,
3.	levels using Verilog/VHDL and observe power reduction.	CO3, CO6
	• Analyze the trade-offs between performance and power using DVFS in	
	real-time workloads.	1
	 Implement a power-aware system that dynamically scales voltage and frequency based on workload requirements. 	

4.	 Power Gating and Multi-Threshold CMOS Design Objective: Implement power gating and multi-threshold CMOS techniques to reduce leakage power. Task: Design a simple digital circuit (e.g., a counter) with power gating and simulate the reduction in leakage power using SPICE. Compare the performance and power dissipation of the design with and without power gating under various load conditions. Implement multi-threshold CMOS design in the same circuit and analyze the leakage power reduction. 	CO3, CO6
5.	 Low Power Memory Design Objective: Design low-power SRAM and explore leakage reduction techniques in memory circuits. Task: Implement a 4x4 SRAM cell and simulate its power consumption in active and standby modes. Apply leakage power reduction techniques like reverse body biasing and stack forcing to minimize standby power. Compare power consumption of SRAM with DRAM and non-volatile memories for different read/write operations. 	CO3, CO6
6.	 Exploring Emerging Low-Power Technologies Objective: Explore emerging low-power technologies like FinFETs, TFETs, and NEM relays. Task: Simulate a basic logic circuit using FinFET technology and compare its power consumption with traditional CMOS technology. Design and simulate a basic TFET-based inverter and analyze its power characteristics. Research NEM relays and propose a power-efficient circuit design for ultra-low-power applications (e.g., biomedical devices). 	CO3, CO6
	24P1205 (D): System Design with FPGA	
1.	 FPGA Architecture Exploration Using HDL Objective: Understand the FPGA architecture and develop basic designs using HDLs. Task: Create a simple combinational logic circuit (e.g., an AND gate and a multiplexer) using Verilog/VHDL. Implement the design on a Xilinx/Intel FPGA board and analyze the usage of CLBs, IOBs, and routing resources. Perform timing analysis and verify the design using simulation tools (Xilinx Vivado or Intel Quartus Prime). 	CO4, CO5
2.	 FPGA Design Flow and Tool Exploration Objective: Explore the FPGA design flow using industry-standard FPGA tools. Task: Design a 4-bit counter using Verilog/VHDL and simulate the design in Xilinx Vivado or Intel Quartus Prime. Perform synthesis, place and route, and implementation steps in the FPGA design flow. Verify the design by downloading it to an FPGA board and observing the output using LEDs or a logic analyzer. 	CO4, CO5
3.	 Timing Analysis and Constraints in FPGA Designs Objective: Implement and verify FPGA timing constraints and perform timing analysis. Task: Implement a basic sequential circuit (e.g., a shift register) and analyze its timing characteristics. 	CO4, CO5

	 Apply design constraints using the Xilinx Constraints File (XCF) or Intel's SDC format and evaluate timing performance. Optimize the design to meet timing requirements and verify it on the FPGA board. 	
4.	 FPGA-Based Embedded System Design Objective: Design and implement an embedded system on FPGA using an ARM-based SoC. Task: Integrate a MicroBlaze processor on a Xilinx FPGA or Nios II processor on an Intel FPGA. Interface the processor with external peripherals like UART, GPIO, and SPI. Develop and execute a simple program to control LEDs and switches using the embedded processor. 	CO4, CO5
5.	 High-Level Synthesis (HLS) for FPGA Design Objective: Use high-level synthesis (HLS) tools for FPGA design optimization. Task: Design a simple FIR filter using C/C++ code and synthesize it for FPGA using HLS tools (e.g., Xilinx Vivado HLS). Compare the performance and resource utilization of the HLS- generated design with a manually written HDL design. Analyze the trade-offs between performance, area, and power for different optimization settings. 	CO4, CO5
6.	 FPGA-Based System Prototyping and Peripheral Interfacing Objective: Prototype a system using FPGA and interface with external peripherals. Task: Design an FPGA-based system that interfaces with external peripherals such as ADCs, DACs, or sensors (e.g., temperature or light sensors). Implement communication protocols such as I2C or SPI to interface with the peripherals. Test the system by reading sensor data and displaying it on an LCD or sending it over UART to a PC. 	CO4, CO5

F	First Year Master of	f Technology (FY M	Fech VLSI & Embedded Systems)			
	24P120	08: Study of Ind	lian Constitution			
Teaching Scheme Tutorial: 1 Hr/week Prerequisite:		Credit	Examination Head: SEMI			
		1	Examination Scheme & Marks ISE : 20 Marks ESE: 30 Marks			
		Any graduate				
 To To To To 	understand the reaso India learn the Directive F understand the powe	ons, operation and just Principles of India. ers, functions and stru	stitution and Constitutionalism ification of the growth of Fundamenta ctures of various Constitutional bodies context of social, economic and politic	8.		
Course O			context of social, economic and pointe	<i>.</i>		
On comple		earner will be able to:		BL		
CO1:	Apply knowledge of the historical background, key features, and provisions related to citizenship in the Indian Constitution to assess its relevance to contemporary governance.					
CO2:	Analyze and present findings for study of - the structure and classification of fundamental rights, directive principles of state policy, and fundamental duties enshrined in the Constitution.6					
CO3:	Comprehend the roles, powers, and functions of the Union executive, Union Legislature, and Union judiciary, with a focus on parliamentary procedures and the Supreme Court.					
CO4:	Survey the composition, powers, and functions of the State executive, State Legislature, and State judiciary, including the role of Governors and High Courts.					
CO5:	Discover the legislative, administrative, and financial relations between the Union and State governments, including provisions for emergency, trade, and amendments to the Constitution.					
CO5:	Elaborate the Indian Constitution's framework and its role in governing the structure and functioning of both the Union and State governments, fostering responsible citizenship.					
Unit-I:	Introduction and	Citizenship		4 hrs		
Definition	of constitution, histo	prical back ground, sa	lient features of the constitution. Prea	mble of		
the constit	ution, union and its t	erritory. Meaning of c	citizenship, types, termination of citize	nship.		
Unit-II:	Dights in the Car	stitution and Direct	ve principles of state policy	6 hrs		

Definition of state, fundamental rights, general nature, classification, right to equality, right to freedom, right against exploitation. Right to freedom of religion, cultural and educational rights, right to constitutional remedies. Protection in respect of conviction for offences. Directive principles of state policy, classification of directives, fundamental duties.

Unit-III:Structure, Powers and Functions of Union Legislature5 hrs

The Union executive, the President, the vice President, the council of ministers, the Prime minister, Attorney-General, functions. The parliament, composition, Rajya Sabha, Lok Sabha, qualification and disqualification of membership, functions of parliament. Union judiciary, the supreme court, jurisdiction, appeal by special leave.

Unit-IV: Structure, Powers and Functions of State Legislature

The State executive, the Governor, the council of ministers, the Chief minister, advocate general, union Territories. The State Legislature, composition, qualification and disqualification of membership, functions. The state judiciary, the high court, jurisdiction, writs jurisdiction.

Unit-V: Legislative relation between Union and State

5 hrs

5 hrs

Relations between the Union and the States, legislative relation, administrative relation, financial Relations, Inter State council, finance commission. Emergency provision, freedom of trade commerce and inter course, comptroller and auditor general of India, public Services, public service commission, administrative Tribunals. Official language, elections, special provisions relating to certain classes, amendment of the Constitution.

Text Books:

1]. **"Introduction to the constitution of India",** D. D. Basu, Lexis Nexis, New Delhi, 24e, 2019

2]. "The constitution of India, Universal Law", P. M. Bhakshi, , 14e, 2017

Reference Books:

- 1]. "The constitution of India", Ministry of law and justice, Govt of India, New Delhi, 2019.
- 2]. "The constitutional law of India", Dr. J. N. Pandey, Allahabad, 51e, 2019
- 3]. "India's Constitution", M. V. Pylee, S Chand and company, New Delhi, 16e, 2016

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2
CO1	-	2	2	-	-	1	-	-
CO2	-	2	-	-	-	2	-	-
CO3	-	3	2	-	-	2	-	-
CO4	-	2	-	-	-	1	-	-
CO5	-	3	2	-		1	-	-
CO6	-	2	-	-		2	-	-

The CO-PO Mapping Matrix: